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CORRIGENDUM
Rayleigh–Taylor problem for a liquid–liquid phase interface

X. Chen and E. Fried

Journal of Fluid Mechanics, vol. 560 (2006), pp. 395–414

We thank Konstantin I. Ilin for discovering an oversight in our treatment of the
inviscid Rayleigh–Taylor problem for a liquid–liquid phase interface. This oversight
occurs in the case j �= 0 for which mass transport is present in the base state. In this
case, the ordinary differential equation (3.6) of the paper has characteristic roots ±k

and �±Lω/J0|At|T . We discarded the latter root on the incorrect grounds that it is
of ‘indeterminate sign.’ This root actually gives a decaying (at infinity) solution on
one or other side of the interface depending on the sign of the real part of ω/J0. If
the root �±Lω/J0|At|T is not discarded, then another interface condition is needed.
We show below that accounting properly for the existence of this root does not alter
the stability results presented in the paper.

Equation (1.7) of the paper assumes that the kinematical condition (1.11) holds.
Indeed, without recourse to (1.11), the interfacial linear momentum balance should
read

[[S]]n − [[pe]]n + J [[u]] = −γKn − divS�. (1)

Since n and V are interfacial fields, it follows from the interfacial mass balance (1.6)
that

[[u]] = [[u − V n]] = [[u · n − V ]]n + �[[u − V n]] = −J [[1/�]]n + �[[u]] (2)

and (1) reduces to (1.7) only when �[[u]] = 0 (i.e. when (1.11) holds). Since we imposed
both (1.7) and (1.11) in treating the viscous case of the Rayleigh–Taylor problem for
a liquid–liquid phase interface, further comment is required only for the inviscid case.

For the inviscid case, S = 0, � = 0, and (1) reduces to

[[pe]]n + J 2[[1/�]]n − γKn = J�[[u]]. (3)

While the normal component of (3) is (3.2a) of the original paper, the tangential
component of (3) requires that J�[[u]] = 0. The complete system of interface
conditions for the inviscid version of the problem is therefore

[[�(V − u · n)]] = 0, (4a)

[[pe]] + J 2[[1/�]] = γK, (4b)

J�[[u]] = 0, (4c)

Ψ + [[pe/�]] + 1
2
J 2[[1/�2]] = 0. (4d)

Equations (4a) and (4d) are, respectively, the interfacial mass balance (1.6) and the
interfacial configurational momentum balance (3.2b) of the paper.

For the classical Rayleigh–Taylor problem, J = 0 and (3) reduces to (4b). It is
therefore noteworthy that, in the inviscid version of classical Rayleigh–Taylor problem,
the normal and tangential components of the interfacial momentum balance (3) are
both satisfied regardless of whether the tangential component of the velocity is
continuous across the interface.
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For the inviscid Rayleigh–Taylor problem with a phase transformation, we con-
sidered two cases: j = 0 and j �= 0. When j = 0, the mass flux J0 across the interface
in the base state vanishes and the root �±Lω/J0|At|T does not exist. Moreover,
the tangential component (4c) of the interfacial momentum balance yields an
amplitude equation identical, at first order in ε, to the amplitude equation arising from
the configurational momentum balance (4d). Specifically, the amplitude equations are

�+A+ − �−A− =
[[�]]ω

|At|T C,

�+Lω

|At|T A+ +
�−Lω

|At|T A− =

{
[[�]]g − γ k2

L2

}
kC,

A+ + A− = 0,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(5)

and these equations lead to the dispersion relation (3.19) discussed in the paper for
the case j =0. The stability results obtained for this case are therefore error-free.

For the case j �=0, there are two possible subcases: Re{ω/J0} > 0 and Re{ω/J0} < 0.
Suppose, first, that Re{ω/J0} > 0. For this subcase, there are two alternatives

depending upon whether

ω �= j |At|k
1 − At

or ω =
j |At|k
1 − At

. (6)

When the first alternative in (6) holds, it follows from (3.6) of the paper that v1 takes
the form

v1(y) =

⎧⎨
⎩

A+ exp(−ky), y > 0,

A− exp(ky) + B− exp

(
�−Lω

J0|At|T y

)
, y < 0.

(7)

Importantly, when ω = j |At|k/(1 − At), (7) becomes

v1(y) =

{
A+ exp(−ky), y > 0,

(A− + B−) exp(ky), y < 0,
(8)

which is equivalent to (3.7) of the paper. We then have only three unknown amplitudes
A+, A− + B−, and C (from the interfacial disturbance) and four distinct interfacial
equations arising from (4) to be satisfied. For this reason, (7) is incompatible with
the second alternative in (6). When that alternative holds, the characteristic equation
arising from (3.6) of the paper has a double root and v1 takes the form

v1(y) =

{
A+ exp(−ky), y > 0,

(A− + B−ky) exp(ky), y < 0.
(9)

For j �= 0 and Re{ω/J0} > 0, (3.7) of the paper should be replaced by either (7) or
(9), corresponding to whether ω �= j |At|k/(1 − At) or ω = j |At|k/(1 − At), respectively.

If ω �= j |At|k/(1 − At), so that v1 is given by (7), then the corresponding expressions
for u1 and p1 are

u1(y) =

⎧⎪⎨
⎪⎩

−iA+ exp(−ky), y > 0,

iA− exp(ky) +
i�−Lω

J0|At|T k
B− exp

(
�−Lω

J0|At|T y

)
, y < 0,

(10)
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and

p1(y) =

⎧⎪⎪⎨
⎪⎪⎩

A+

{
J0 +

�+Lω

|At|T k

}
exp(−ky), y > 0,

A−

{
J0 − �−Lω

|At|T k

}
exp(ky), y < 0.

(11)

For j �= 0, Re{ω/J0} > 0, and ω �= j |At|k/(1 − At), (3.8) and (3.9) of the paper should
be replaced by (10) and (11), respectively. The amplitude equations arising from (7),
(10), and (11) are

�+A+ − �−A− − �−B− =
[[�]]ω

|At|T C,

�+

{
J0k

�−
+

Lω

|At|T

}
A+ − �−

{
J0k

�+
− Lω

|At|T

}
A− + J0

[[�]]

�+
kB−

=

{
[[�]]g − γ k2

L2
+

2J0〈〈�〉〉[[�]]ω

�+�−|At|T

}
kC,

A+ + A− +
�−Lω

J0|At|T k
B− =

J0k[[�]]

�+�−L
C,{

�+J0〈〈1/�2〉〉k +
Lω

|At|T

}
A+ −

{
�−J0〈〈1/�2〉〉k − Lω

|At|T

}
A− − 1

2
�−J0[[1/�2]]kB−

=
2J0〈〈�〉〉2

[[�]]kω

(�+�−)2|At|T C.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(12)

For j �=0, Re{ω/J0} > 0, and ω �= j |At|k/(1 − At), (3.12)–(3.14) of the paper should be
replaced by (12). Necessary and sufficient for the system (12) to possess a non-trivial
solution is the requirement that its determinant vanish, which yields(

ω2 − j 2|At|2k2

(1 − At)2

){
ω2 −

(
At − k2

2We

)
k

Fr
+

j 2At2k2

1 − At2

}
= 0. (13)

Bearing in mind that Re{ω/J0} > 0 and that ω �= j |At|k/(1 − At), (13) holds if and
only if

ω2 =

(
At − k2

2We

)
k

Fr
− j 2At2k2

1 − At2
, (14)

which is identical to the dispersion relation (3.18) discussed in the paper.
If ω = j |At|k/(1 − At), so that v1 is given by (9), then the corresponding expressions

for u1 and p1 are

u1(y) =

{
−iA+ exp(−ky), y > 0,

i(A− + B− + B−ky) exp(ky), y < 0,
(15)

and

p1(y) =

⎧⎨
⎩2A+

J0〈〈�〉〉
�−

exp(−ky), y > 0,

J0B
− exp(ky), y < 0.

(16)

For j �= 0, Re{ω/J0} > 0, and ω �= j |At|k/(1 − At), (3.8) and (3.9) of the paper should
be replaced by (15) and (16), respectively. The amplitude equations arising from (9),
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(15), and (16) are

�+A+ − �−A− =
J0[[�]]k

�−L
C,

2J0

�+

�−
A+ + J0

[[�]]

�+
A− − J0B

− =

{
[[�]]g − γ k2

L2
+

J 2
0 [[�2]]k

�+�−2L

}
C,

A+ + A− + B− =
J0[[�]]k

�+�−L
C,

4
〈〈�〉〉2

�+�−2
A+ − �−[[1/�2]]A− − 2

�−
B− =

4J0〈〈�〉〉2
[[�]]k

�+2�−3L
C,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(17)

where the relation ω = j |At|k/(1−At) has been used to eliminate dependence upon ω.
For j �= 0, Re{ω/J0} > 0, and ω = j |At|k/(1 − At), (3.12)–(3.14) of the paper should be
replaced by (17). Necessary and sufficient for the system (17) to possess a non-trivial
solution is the requirement that its determinant vanish, which yields

k2 +
4WeFrAt2j 2

(1 − At2)(1 − At)
k − 2AtWe = 0. (18)

The quadratic (18) has two real roots

k± = ±

√(
2WeFrAt2j 2

(1 − At2)(1 − At)

)2

+ 2AtWe − 2WeFrAt2j 2

(1 − At2)(1 − At)
(19)

and the growth rate ω+ = j |At|k+/(1 − At) corresponding to the positive root k+ is
unstable. Recall that the cutoff wavenumber kc determined by the dispersion relation
(14) (cf. (3.20) of the paper) has the form

kc =

√(
WeFrAt2j 2

1 − At2

)2

+ 2AtWe − WeFrAt2j 2

1 − At2
. (20)

Since
√

b2
1 + a − b1 <

√
b2

2 + a − b2, provided that a, b1, and b2 are real numbers
satisfying a > 0 and 0 <b2 < b1, and since 2/(1 − At) > 1, it follows that k+ <kc.
Moreover, setting k = k+ in (14) gives ω = j |At|k+/(1−At) = ω+. Hence, the degenerate
alternative ω = j |At|k/(1 − At) yields no growing modes beyond those determined by
the dispersion relation (14) for ω �= j |At|k/(1 − At).

The analysis of the remaining subcase Re{ω/J0} < 0 is completely analogous to
that of the subcase Re{ω/J0} > 0. In particular, two alternatives,

ω �= − j |At|k
1 + At

or ω = − j |At|k
1 + At

, (21)

arise.
If ω �= −j |At|k/(1 + At), then it follows from (3.6) of the paper that v1 takes the

form

v1(y) =

⎧⎨
⎩A+ exp(−ky) + B+ exp

(
�+Lω

J0|At|T y

)
, y > 0,

A− exp(ky), y < 0.

(22)
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Further, the corresponding expressions for u1 and p1 are

u1(y) =

⎧⎨
⎩−iA+ exp(−ky) +

i�+Lω

J0|At|T k
B+ exp

(
�+Lω

J0|At|T y

)
, y > 0,

iA− exp(ky), y < 0,

(23)

and

p1(y) =

⎧⎪⎪⎨
⎪⎪⎩

A+

{
J0 +

�+Lω

|At|T k

}
exp(−ky), y > 0,

A−

{
J0 − �−Lω

|At|T k

}
exp(ky), y < 0.

(24)

For j �= 0, Re{ω/J0} < 0, and ω �= −j |At|k/(1 + At), (3.7), (3.8) and (3.9) of the paper
should be replaced by (22), (23) and (24), respectively. The amplitude equations arising
from (22)–(24) are

�+A+ + �+B+ − �−A− =
[[�]]ω

|At|T C,

�+

{
J0k

�−
+

Lω

|At|T

}
A+ + J0

[[�]]

�−
kB+ − �−

{
J0k

�+
− Lω

|At|T

}
A−

=

{
[[�]]g − γ k2

L2
+

2J0〈〈�〉〉[[�]]ω

�+�−|At|T

}
kC,

A+ − �+Lω

J0|At|T k
B+ + A− =

J0k[[�]]

�+�−L
C,{

�+J0〈〈1/�2〉〉k +
Lω

|At|T

}
A+ − 1

2
�+J0[[1/�2]]kB+ −

{
�−J0〈〈1/�2〉〉k − Lω

|At|T

}
A−

=
2J0〈〈�〉〉2

[[�]]kω

(�+�−)2|At|T C.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(25)

For j �= 0, Re{ω/J0} < 0, and ω �= −j |At|k/(1 + At), (3.12)–(3.14) of the paper should
be replaced by (25). Necessary and sufficient for the system (25) to possess a non-
trivial solution is the requirement that its determinant vanish. Bearing in mind that
Re{ω/J0} < 0 and that ω �= −j |At|k/(1 + At), the solvability criterion for this system
is

ω2 =

(
At − k2

2We

)
k

Fr
+

j 2At2k2

1 − At2
, (26)

which coincides, again, with the dispersion relation (3.18) discussed in the paper.
If ω = −j |At|k/(1 + At), then it follows from (3.5) of the paper that v1 takes the

form

v1(y) =

{
(A+ − B+ky) exp(−ky), y > 0,

A− exp(ky), y < 0.
(27)

Further, the corresponding expressions for u1 and p1 are

u1(y) =

{
−i(A+ + B+ − B+ky) exp(−ky), y > 0,

iA− exp(ky), y < 0,
(28)

and

p1(y) =

⎧⎨
⎩

J0B
+ exp(−ky), y > 0,

2A− J0〈〈�〉〉
�+

exp(ky), y < 0.
(29)
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The amplitude equations arising from (27)–(29) are

�+A+ − �−A− = −J0[[�]]k

�+L
C,

J0

[[�]]

�−
A+ + J0B

+ − 2J0

�−

�+
A− =

{
[[�]]g − γ k2

L2
− J 2

0 [[�2]]k

�+2�−L

}
C,

A+ + B+ + A− =
J0[[�]]k

�+�−L
C,

�+[[1/�2]]A+ − 2

�+
B+ + 4

〈〈�〉〉2

�+2�−
A− =

4J0〈〈�〉〉2
[[�]]k

�+3�−2L
C,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(30)

where the relation ω = −j |At|k/(1 + At) has been used to eliminate dependence upon
ω. For j �= 0, Re{ω/J0} < 0, and ω = −j |At|k/(1 + At), (3.12)–(3.14) of the paper
should be replaced by (30). Necessary and sufficient for the system (30) to possess a
non-trivial solution is the requirement that its determinant vanish, which leads to the
quadratic

k2 +
4WeFrAt2j 2

(1 − At2)(1 + At)
k − 2AtWe = 0. (31)

The positive root,

k+ =

√(
2WeFrAt2j 2

(1 − At2)(1 + At)

)2

+ 2AtWe − 2WeFrAt2j 2

(1 − At2)(1 + At)
, (32)

of (31) yields an unstable growth rate ω+ = −j |At|k+/(1 + At) via (21). Inspection
of this root shows that it belongs to the set of unstable modes determined when
ω �= −j |At|k/(1 + At) by the dispersion relation (26).

In conclusion, we have shown that accounting correctly for the additional
characteristic root �±Lω/J0|At|T of the differential equation (3.6) of the paper does
not alter the stability results obtained for the inviscid Rayleigh–Taylor problem with a
phase transformation. Specifically, in this case all unstable growth rates are determined
by the dispersion relation (3.18) given in the paper.


